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End-to-End Aspect-based Sentiment Analysis Il

E2E-ABSA: joint extraction of aspects and their sentiments from user reviews.

Domain:
Lapto -
PIop Aspect Sentiment
User
The AMD Turing Processor AMD Turing Processor Positive
seems to always perform much
better than Intel. Intel Negative

Two subtasks:

» Aspect detection (AD): extract the aspect terms from user reviews.

« Aspect sentiment (AS) classification: Given a review sentence and
an aspect term, predict the sentiment towards the aspect.



Unified Formulation (single domain) K

s

Formulation: coupling two subtasks as a unified sequence labeling

problem.
o Unified tag = aspect boundary tag {B, |, E, O, S} + sentiment tag

{POS, NEG, NEU}
« NER tag = entity boundary tag {B, |, E, O, S} + entity type tag {PER,
ORG, LOC, ...} (Similar)

Input The AMD Turin  Processor seems to always perform much better than  Intel .
Joint 0O B I E O 0O 0O O 0O O o) S o)

O POS POS POS 0O 0 0O 0O 0O 0O o) NEG o)
Unified o) B-POS I-POS E-POS o) o) 0 o) o) o) o) S-NEG O

Li et al., 2019 A unified model for opinion target
extraction and target sentiment prediction AAAI

Pros:

o End-to-end manner
« Alleviate accumulated errors across two highly-correlative sub-tasks.

Cons:
« Lack of sufficient labeled data in a wide range of domains.

« Manual labeling for sequence data is expensive and time-consuming.
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Transferable E2E-ABSA o

Cross-domain:

o leverage knowledge from a
labeled source domain to
improve the sequence learning
(unified tag prediction) in an

The [AMD Turing Processor]_POS seems to unlabeled target domain.

always perform much better than [Intel]_NEG.

Source domain
(Train): Laptop

Aspect

Target domain:
(Test) : Restaurant

Sentiment

Great salmon but the waitress is so rude.

0
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Unified Formulation (cross domain)

Input: a sequence of words x={w, wa,...,wn}

Output: a unified tag sequence y:{yl,yg, s yn}

Source Target

Dy={(x yi )} Dy ={(x})} 2

W/

Sequence Transfer Learning (unsupervised)




What to transfer?

* There exists a large domain shift between domains since aspect terms in
different domains are usually disjoint.

e.g., 'salmon” in the Restaurant domain and “mouse” in the Laptop domain.

How to transfer?

« Unlike domain adaptation in traditional sentiment classification that
learns shared sentence or document representations, we need to learn

fine-grained (word-level) representations to be domain-invariant for
sequence prediction.



Prior work: highly depends on
common syntactic relations between
aspect and opinion words

* manually-designed rules

« external linguistic
(dependency parsers)

resources

| love
much.

tuna sandwich very

| love the design of iPhone 7

RuleID Rule Example
R1 o2% T They have nice dessert.
_ (nice = dessert)
R2 T 2% 0 Its camera is great.
' (camera ﬂ great)
R3 T 2% I love their fries.
. dobj
(fries — love)
nsubj amod . .
R4 T &0 iPhone is the best cellphone.
(iPhone Mﬁ phone ol best)
ERI w2s T I like Indian food.
(Indian = food)
ER2 W—T Their spring roll is great.
_ (spring - roll)
ER3 Wo 2% @y ”% T Ilike the design of iPhone.

(iPhone ﬂ) of R design)

Ding et al., 2017. Recurrent neural
networks with auxiliary labels for cross-
domain opinion target extraction. AAAI

Ours: automatically capture the latent relations among aspect and

opinion words as transferable knowledge.



How to transfer?

4

straightforward solution: apply domain adaption methods to align

all words within the sentence. (no significant improvements).

Reason: Only a small number of words are informative words that

are not tagged with “O”.

# OF LABELS (%)

# OF LABELS (%)

0.46% "0 F1 SCORE OF BILSTM-CNNS-CRF MODEL
o _ 0.59% & Person ON WNUT-2017 DEVELOPMENT SET
1.81% uPER 0.59% u Location
1.62% 'ggg 0.71% oresp Label Type Precision (%)  Recall (%) F1 Score (%)
3.75% . 1.35% u Creative-work
WMISC L 68% ® Product O 95.56 99.46 97.47
o m Corporation
Person 78.75 49.23 60.59
Location 51.02 46.73 48.78
(a) (b) Group 19.23 7.81 11.11
Creative-work 32.94 11.76 17.34
Fig. 2. Label statistics on CONLL-2002 Dutch NER and WNUT-2017 English ~ froduct faed L2 e
Twitter NER train set. The label type “O” is dominant in different data sets. orporation ' : :

(a) CoNLL-2002 Dutch. (b) WNUT-2017 English Twitter.
Zhou et al., Roseq: Robust sequence labeling. TNNLS 2019

Ours: selectively align the informative words within the sentence.
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B Aspect global memory

B Opinion global memory
C] Dual Memory Interaction

E Domain discriminator

Gradient Reversal Layer

Framework

> Multi-hop
LSTMP LSTMB
f

€ € er

Upper LSTMY:
unified tag

SAL: how to transfer

DMI: what to transfer

Lower LSTMB:
aspect boundary tag

Embedding layer
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Base Model o

Two stacked Bi-LSTMs:
* Aspect boundary information can be used as the guidance

= [LSTM®(e,); LSTM® (e,)],
— [LSTMY (h8); LSTMY (hB)].

Low-level AD 28 =p(y?|h?)=Softmalx(Wsh? +bp).~ Primary Ioss
ﬁw—Z > Zf 22,y7)
U U s Qe{BuU}i=1
High-level ADS  Z' =P(y{'[b)=Softmax(Wy/hi' +by). _

AD: Aspect Detection (aspect boundary tags)
ADS: Aspect Detection and Sentiment Classification (unified tags)



What to transfer: Global-Local Memory G
Interaction (GLMI)

GLMI: basic operation for computing the correlations between two
objects (local & global memory).

s

Local Memory: LSTM hidden states
—

eLmi: f(hP m;®,G)
o
Global Memory: commonly-used in memory networks

1) Residual transformation
h? = h? + ReLU(Wh? :m] + b),
2) Multi-dimensional Bilinear Transformation
ri=m’ Gh?3

G e]RKXdimfxdimff models K kinds of latent relations



What to transfer: Dual Memory F
Interaction (DMI)

DMI: models the correlations between aspect and

s

opinions for aspect and opinion co-detection. Dual Memory Interaction
ri; T r}
a&a a&o '_f_‘
' ' EIE
I 1 | : ;
aspect r, -—[f(hB ml:©,. Ga) ! f(hP. m!:0,. G,)l. " l
B B . T L om)
oplnlon I‘ [f(h mo GO) f(h ma,v@aaGao)]v e
J | J
o&o o&a
opinion detection is used as a 0 0 hf mf m; hf
auxiliary task to link the different ~0 = Z 0z y; — —
- D.UD
aspect across domains. t global global
aspect  opinion
A-attention (aspect) & O-attention (opinion) memory memory
l
exp(u,r, )
l P pa
&, ; = .
pii T cq1a.0
D j= 1eXP(upr§>,]) P { }




How to transfer: Selective Adversarial u
Learning (SAL)

Gradient Reversal Layer: (Ganin et al., 2016)

Ry\(x)=x

s

B Aspect global memory

B Opinion global memory

omaln discriminator

D Dual Memory Interaction

E Domain discriminator

P=p(y’ |ra,z') =Softmax(WpR) (I‘gz) +bp)

©21! Gradient Reversal Layer E ~ ~
Iﬁmﬁ S o
o e & Selective adyersarial loss:
~
~
TS~
I, D
Lo= 3, D cuillz

A-attention dynamically
controls the selectivity




How to transfer: Selective Adversarial
Learning (SAL)

* Why do we choose low-level neural layer features (e.g., SAL on
the low-level AD task) for transfer?

s

B Aspect global memory

B Opinion global memory

D Dual Memory Interaction

E Domain discriminator

©:! Gradient Reversal Layer

Existing studies (Yosinski et al., 2014; Mou et al., 2016) have already shown
some evidence that low-level neural layer features (i.e., low-level task) are
more easily transferred to different tasks or domains.
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Training Strategy 0

Joint training: (unstable, too many objectives)

E=Lm+pLo+9Lp

Alternating training: (more stable, two-stage optimization)

Lm+pLo
L”D > > iterative

A

I~ 1 . - - - -
(9} )0,)=arg minLy +pLo  discriminative stage
JYw

(é}z), 6,) =arg néiln max Lp. domain-invariant stage

The parameters for feature learning of each word, word
Of, Hw, 9d predictions for AD, ADS and opinion detection tasks, and domain
classification, respectively.
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Datasets
L: Laptop domain (Pontiki et al., 2014)
R: Restaurant domain (Pontiki et al., 2014,2015,2016)
D: Device domain (Hu and Liu, 2004)
S: Service domain (Toprak et al., 2010)

L and R are from SemEval ABSA challenge 2014, 2015, 2016

Dataset Domain Sentences | Training | Testing
L Laptop 1,869 1,458 411
R Restaurant 3,900 2,481 1,419
D Device 1,437 954 483
S Service 2,153 1,433 720




Setting

4 different domains, 10 transfer pairs (without two easy pairs L—D, D—L)

For each pair e.g., source A-> target B:

Training: Labeled training data from A, unlabeled training data from B
Validation: testing data from A
Testing: testing data from B

Baselines

TCRF: (Jakob and Gurevych, 2010): Transferable CRF
RAP: (Li et al., 2012): cross-domain Relational Adaptive Bootstrapping

Hier-Joint: (Ding et al., 2017): RNN with manually designed rule-based auxiliary
tasks based  on common syntactic relations

RNSCN: (Wang and Pan, 2018): a recursive neural structural correspondence
network

Extended versions:
Hier-doint+ & RNSCN+: original version with the proposed stacking
architecture



Transfer Pair TCRF RAP Hier-Joint Hier-Joint™ RNSCN RNSCN™ Ours

‘ AD | ADS |AD | ADS |AD | ADS | AD | ADS |AD | ADS | AD | ADS | AD | ADS
S—R - 1484 | - 25.41 - 3281 | 46.39 | 31.10 | - | 30.56 | 48.89 | 33.21 | 52.05 | 41.03
L—-R - 16.06 | - 31.05 - 3190 | 48.61 | 33.54 | - | 31.85 | 52.19 | 35.65 | 56.12 | 43.04
D-R - 17.05 - 28.37 - 3003 | 4296 | 32.87 | - | 31.41 | 50.39 | 34.60 | 51.55 | 41.01
R—S i 1520 | - 13.17 i 1520 | 27.18 | 15.56 | - | 23.31 | 3041 | 20.04 | 39.02 | 28.01
L—S - 12.34 | - 13.72 | - 1533 | 2522 | 1390 | - | 16.73 | 31.21 | 16.59 | 38.26 | 27.20
D—S - 13.49 | - 16.80 | - 1874 | 29.28 | 19.04 | - | 18.93 | 3550 | 20.03 | 36.11 | 26.62
R—L - 1459 | - 1569 | - 19.17 | 34.11 | 20.72 | - | 25.54 | 47.23 | 26.63 | 45.01 | 34.13
S—L - 9.56 - 1238 | - | 2180 |33.02 | 2265 | - | 19.15 | 3403 | 18.87 | 3599 | 27.04
R—D - 19.84 | - 1750 | - | 2291 | 3481 | 2453 | - | 3243 | 46.16 | 33.26 | 43.76 | 35.44
S—D - 13.43 - 1574 | - | 2004 | 3500 | 2324 | - | 1998 | 3241 | 22.00 | 41.21 | 33.56
Average i 14.64 | - 1898 | - | 2279 | 3566 | 23.72 | - | 2499 | 40.84 | 26.09 | 43.91' | 33.711
(A) - 1 (19.07) | - | (1473) | - | (1092) | (8.25) | (9.99) | - | (8.72) | (3.07) | (7.62) - -

Table 2: Main results (%). A refers to the improvements of the full model over baseline methods.
means that our model significantly outperforms the best baseline RNSCN™ with p-value < 0.01.

The marker



Ablation Variants

What to transfer -

-+ Base Model (SO / TO): two stacked Bi-LSTMs. SO (Source
Only) and TO (Target Only). We usually refer to them as a lower
bound and a upper bound, respectively.

L« Base Model + DMI: two stacked Bi-LSTMs with a DMI between
them.

-+ AD-AL: pure adversarial learning (removing the selective weight
from the adversarial loss) for the low-level AD task .

How to transfer { * ADS-SAL: selective adversarial learning on each word

representations for the high-level ADS task.

-+ AD-SAL (Full model): selective adversarial learning for the low-
level AD task .

Note: The backbones of the AD-AL ADS-SAL and AD-SAL
are all based on the Base Model +DMI



No DMI DMI
| |
|
Lower bound Ablation Models Full Model Upper bound
Transfer Pair | Base Model (SO) | Base Model+DMI AD-AL ADS-SAL AD-SAL Base Model (TO)
AD | ADS AD | ADS AD | ADS AD | ADS AD | ADS AD | ADS
S—R 30.32 19.74 | 45.68 37.10 48.28 | 37.65 | 51.29 | 41.03 | 52.05 | 41.03
L—-R 33.99 28.34 | 46.25 36.49 51.79 | 38.63 | 5550 | 42.00 | 56.12 | 43.04 | 81.84 67.26
D—R 31.59 27.25 | 46.56 36.89 46.39 | 3734 | 4643 | 38.35 | 51.55 | 41.01
R—S 15.63 8.61 21.88 16.85 25.13 | 18.61 | 37.11 | 25.84 | 39.02 | 28.01
L—-S 22.45 16.07 | 28.67 21.53 28.18 | 20.74 | 3035 | 23.73 | 38.26 | 27.20 | 68.28 41.12
D—-S 16.79 9.49 31.91 22.14 32.88 | 24.89 | 3251 | 21.45 | 36.11 26.62
R—L 38.45 23.40 | 42.27 30.52 40.52 | 28.77 | 4456 | 33.34 | 45.01 34.13 75.95 52 62
S—L 24.69 14.48 | 36.38 27.48 3296 | 25.16 | 33.87 | 24.22 | 3599 | 27.04 ' '
R—D 34.87 25.79 | 36.90 27.71 41.61 | 31.88 | 43.97 | 34.50 | 43.76 | 3544 70.37 57 .62
S—D 27.73 17.73 | 38.03 31.21 39.54 | 32.28 | 4040 | 33.26 | 41.21 33.56 ’ :
Average 27.65 19.09 | 3745 28.79 38.73 | 29.60 | 41.60 | 31.77 | 43.91" | 33.71" | 74.11 54.66
(A) (16.26) | (14.62) | (6.46) (4.92) (5.18) | (4.11) | (2.31) | (1.94) - - - -

Table 3: Ablation results (%). A refers to the improvements of the full model over ablation methods. The marker

" means that the full model significantly outperforms the best ablation model ADS-SAL with p-value < 0.01.



No SAL SAL
A |
1
Lower bound Ablation Models Full Model Upper bound
Transfer Pair | Base Model (SO) | Base Model+DMI AD-AL ADS-SAL AD-SAL Base Model (TO)
AD | ADS AD | ADS AD | ADS AD | ADS AD | ADS AD | ADS
S—R 30.32 19.74 | 45.68 37.10 48.28 | 37.65 | 51.29 | 41.03 | 52.05 41.03
L->R 33.99 28.34 | 46.25 36.49 51.79 | 38.63 | 55.50 | 42.00 | 56.12 43.04 | 81.84 67.26
D—R 31.59 27.25 46.56 36.89 46.39 | 3734 | 4643 | 38.35 | 51.55 41.01
R—S 15.63 8.61 21.88 16.85 25.13 | 18.61 | 37.11 | 25.84 | 39.02 28.01
L—>S 22.45 16.07 28.67 21.53 28.18 | 20.74 | 30.35 | 23.73 | 38.26 27.20 | 68.28 41.12
D—S 16.79 9.49 3191 22.14 32.88 | 24.89 | 32.51 | 21.45 | 36.11 26.62
R—L 38.45 23.40 | 42.27 30.52 40.52 | 28.77 | 4456 | 33.34 | 45.01 34.13 75.95 52 62
S—L 24.69 14.48 36.38 27.48 3296 | 25.16 | 33.87 | 24.22 | 35.99 27.04 ' '
R—D 34.87 25.79 36.90 27.71 41.61 | 31.88 | 43.97 | 34.50 | 43.76 3544 70.37 57 62
S—D 27.73 17.73 38.03 31.21 39.54 | 32.28 | 4040 | 33.26 | 41.21 33.56 ' '
Average 27.65 19.09 3745 28.79 38.73 | 29.60 | 41.60 | 31.77 | 43.91" | 33.71" | 74.11 54.66
(A) (16.26) | (14.62) | (6.46) (4.92) (5.18) | (4.11) | (2.31) | (1.94) - - - -

Table 3: Ablation results (%). A refers to the improvements of the full model over ablation methods. The marker

" means that the full model significantly outperforms the best ablation model ADS-SAL with p-value < 0.01.



No Selectivity

Selectivity

| |
[ [ |
Lower bound Ablation Models Full Model Upper bound
Transfer Pair | Base Model (SO) | Base Model+DMI AD-AL ADS-SAL AD-SAL Base Model (TO)
AD | ADS AD | ADS AD | ADS AD | ADS AD | ADS AD | ADS
S—R 30.32 19.74 | 45.68 37.10 48.28 | 37.65 | 51.29 | 41.03 | 52.05 41.03
L->R 33.99 28.34 | 46.25 36.49 51.79 | 38.63 | 55.50 | 42.00 | 56.12 43.04 | 81.84 67.26
D—R 31.59 27.25 46.56 36.89 46.39 | 3734 | 4643 | 38.35 | 51.55 41.01
R—S 15.63 8.61 21.88 16.85 25.13 | 18.61 | 37.11 | 25.84 | 39.02 28.01
L—>S 22.45 16.07 28.67 21.53 28.18 | 20.74 | 30.35 | 23.73 | 38.26 27.20 | 68.28 41.12
D—S 16.79 9.49 3191 22.14 32.88 | 24.89 | 32.51 | 21.45 | 36.11 26.62
R—L 38.45 23.40 | 42.27 30.52 40.52 | 28.77 | 4456 | 33.34 | 45.01 34.13 75.95 52 62
S—L 24.69 14.48 36.38 27.48 3296 | 25.16 | 33.87 | 24.22 | 35.99 27.04 ' '
R—D 34.87 25.79 36.90 27.71 41.61 | 31.88 | 43.97 | 34.50 | 43.76 3544 70.37 57 62
S—D 27.73 17.73 38.03 31.21 39.54 | 32.28 | 4040 | 33.26 | 41.21 33.56 ' '
Average 27.65 19.09 3745 28.79 38.73 | 29.60 | 41.60 | 31.77 | 43.91" | 33.71" | 74.11 54.66
(A) (16.26) | (14.62) | (6.46) (4.92) (5.18) | (4.11) | (2.31) | (1.94) - - - -

Table 3: Ablation results (%). A refers to the improvements of the full model over ablation methods. The marker

" means that the full model significantly outperforms the best ablation model ADS-SAL with p-value < 0.01.



High-level Low-level

| |
[ | N |
Lower bound Ablation Models Full Model Upper bound
Transfer Pair | Base Model (SO) | Base Model+DMI AD-AL ADS-SAL AD-SAL Base Model (TO)
AD | ADS AD | ADS AD | ADS AD | ADS AD | ADS AD | ADS
S—R 30.32 19.74 | 45.68 37.10 48.28 | 37.65 | 51.29 | 41.03 | 52.05 41.03
L->R 33.99 28.34 | 46.25 36.49 51.79 | 38.63 | 55.50 | 42.00 | 56.12 43.04 | 81.84 67.26
D—R 31.59 27.25 46.56 36.89 46.39 | 3734 | 4643 | 38.35 | 51.55 41.01
R—S 15.63 8.61 21.88 16.85 25.13 | 18.61 | 37.11 | 25.84 | 39.02 28.01
L—>S 22.45 16.07 28.67 21.53 28.18 | 20.74 | 30.35 | 23.73 | 38.26 27.20 | 68.28 41.12
D—S 16.79 9.49 3191 22.14 32.88 | 24.89 | 32.51 | 21.45 | 36.11 26.62
R—L 38.45 23.40 | 42.27 30.52 40.52 | 28.77 | 4456 | 33.34 | 45.01 34.13 75.95 52 62
S—L 24.69 14.48 36.38 27.48 3296 | 25.16 | 33.87 | 24.22 | 35.99 27.04 ' '
R—D 34.87 25.79 36.90 27.71 41.61 | 31.88 | 43.97 | 34.50 | 43.76 3544 70.37 57 62
S—D 27.73 17.73 38.03 31.21 39.54 | 32.28 | 4040 | 33.26 | 41.21 33.56 ' '
Average 27.65 19.09 3745 28.79 38.73 | 29.60 | 41.60 | 31.77 | 43.91" | 33.71" | 74.11 54.66
(A) (16.26) | (14.62) | (6.46) (4.92) (5.18) | (4.11) | (2.31) | (1.94) - - - -

Table 3: Ablation results (%). A refers to the improvements of the full model over ablation methods. The marker
" means that the full model significantly outperforms the best ablation model ADS-SAL with p-value < 0.01.
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Case studies

No Adaptation Adversarial  Selective Adversarial
A | 1
[ 11 | |
Base model+DMI AD-AL AD-SAL
Inpat:; (Target domain L) AD ADS AD ADS AD ADS
1. This laptop has only 2 [ush portshes , ports(X),
and they are both on the same side . side (X) NONE(X) NONE() |NONE() usb ports Lusb portslue
2 IF poldig S mtegru.te [nivad devices (X), ||devices)pos (X), bluetooth devices, ||bluetooth devices)pos,
da’l’u‘c’.\‘]['os ,and [H.\‘b dt'l’l(‘(’.\‘] pog dre X % NONE(X) NONE(X) . §
22 g devices (X) ||devices)pqs (X) ush devices |ush devices)pqs
recognized almost instantly .
3;1: :I‘::) wanted [windows 7]ros , Which this NONE(X) |NONE(X) NONE(X) |NONE(X) windows 7 [windows 7 pos
4. The [.\‘/)('('.lll.pogf , the [simplicitylpos , lhe. S [speed]pos, spee"d, [spec"d] POS» e deian, [spee"d] POS»
[design]pqs itis lightyears ahead of any pc i desian [esienloes design, pc | |design]yqs, simplicity |design]pqs,
have ever owned . sig Sighleos (X) [peleos (X) i L [simplicity)pos
6. The [battery life]pqs 1s excellent , the battery (X), |[battery)pos (X), |battery (X), | [battery).qs (X), |battery life, [battery lifelsqs,
[displayleos is excellent and [downloading  |display, [display)pos, display, [displayleos, display, [display]pos,
appsleos is a breeze . apps (X)  |lappsleos (X)  |apps (X)  |lappsleos (X)  |downloading apps |[downloading apps]eos

Table 4: Case analysis for the R— 1L pair. Note that we only show the sentiment part of the unified labels (i.e.,
POS, NEG, and NEU) and use brackets to indicate the boundary. The marker X denotes an incorrect prediction.
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Future Works

* Potentially, extend the proposed SAL method to other domain
adaptation methods.

* Apply the SAL on more general sequence labeling tasks
including NER, POS, Chunking and so on.
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Thank You!

Questions?

» Our code is open source and publicly available at the github:

https://github.com/hsgmlzno1/Transferable-E2E-ABSA



https://github.com/hsqmlzno1/Transferable-E2E-ABSA
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