
Long-Term Revenue Maximization Pricing Scheme for Cloud

Wen-Kai Huang∗, Shao-Shu Huang∗, Zheng Li∗, Chang-Dong Wang∗ and Jian-Huang Lai†
∗School of Mobile Information Engineering

Sun Yat-sen University, Zhuhai, P. R. China, 519082
Email: huang.wenkai@foxmail.com, shaoshuhuang@foxmail.com, hsqmlz@gmail.com, changdongwang@hotmail.com

†School of Information Science and Technology
Sun Yat-sen University, Guangzhou, P. R. China, 510006

Email:stsljh@mail.sysu.edu.cn

Abstract—In recent years, cloud computing has become
a new revolution in science and technology. It releases the
burden of system maintenance for users and only charges them
according to the resources they use. However, the resource
pricing system for cloud computing is far from mature,
most cloud providers charge users only in a static pricing
manner. Though some efforts have been made in developing
dynamic pricing schemes for cloud, most of them only focus
on maximizing short-term revenue. Currently there is a lack
of methodology to optimize long-term revenue for cloud. In
this paper, we aim to address this issue by proposing a new
pricing scheme which consists of the following four main
steps. Firstly, we conduct an empirical study of how users
make use of Google’s cloud, and find the composition of users
according to their using behaviour. Secondly, we introduce
a revised agglomerative hierarchical clustering algorithm to
cluster users into different types according to their using
behaviour with the number of clusters being automatically
estimated. Thirdly, for each type of user, a consumption
potential prediction model is built by using neutral network.
Fourthly, by using dynamic programming, we calculate the
optimal strategy that can maximize long-term profit of cloud
service provider with considering consumption potential factor
generated from prediction. Experiments by simulating users’
auction process based on deal making probability evolution
have been conducted to demonstrate the effectiveness of our
method.

Keywords-cloud computing; auction; dynamic pricing; con-
sumption potential prediction

I. INTRODUCTION

With the development of cloud computing, cloud service
has become an important resource for individuals and enter-
prises, which releases system maintenance for them. Since
users only pay according to the amount of resources they
consume, appropriate pricing strategy is highly important
for cloud service providers.

For Infrastructure as a Service (IaaS) providers, a long-
term contract with the fixed price is a preferential choice,
since it can guarantee the stability of the infrastructure
consumption. Static pricing scheme’s simplicity and con-
venience make it the most widely used pricing scheme
nowadays. However, static pricing scheme is far from op-
timal. This is because IaaS providers often have temporary
idle resource, and it is a waste of resources given the fact

that these resources are perishable and cause maintenance
expense as time goes by. This implies that static pricing
scheme can’t maximize profits for cloud providers.

A better way compared with static pricing scheme is
dynamic pricing based on auction. This kind of deal can
be seldom affected by third party. Besides, it can make full
use of cloud resources based on some principals of economy,
i.e., supply-demand relationship determines deal price.

A. Related Work

Though some cloud providers like Amazon [1] has already
brought out their spot instance to charge via auction, [2]
proves that Amazon’s auction method is not market driven
and is generated as a random value twisting around a hidden
reserved price within a tightly hidden interval.

To make auction market-driven, many researchers put
forward their methods. Most of these methods assume that
the intangible hand can push cloud resource market to
equilibrium [3] [4] [5] [6].

Based on auction, [5] uses greedy algorithm to set price.
Users with front rank of price/requirement value are ac-
cepted as more as possible under the condition that request
should within total resource limitation and the price is higher
than the running cost. However, this method doesn’t consider
the effect that the changing price has on user’s requirements
and only focuses on short-term revenue maximization.

To model users’ reaction to price, [7] views users’ enter
rate and exit rate as the Poisson process. Although this
model can show users’ macroscopic reaction to price, it can
not model the difference of consumption behaviour between
different kinds of users.

Another shortcoming of [5] is cloud provider’s cost hasn’t
been take into consideration. To address this problem, [8]
formulate the allocation problem as a multidimensional
knapsack problem extended with reserve price constraint.

Data mining approaches are also used for pricing [9], but
it only proposed an framework without clear details and only
analysis it in theory with some game theories [10].

The mixed game theory has also been utilized to develop
new pricing schemes [9] [11] [12]. They use cooperative
game theory to optimize profits for providers, and then



Historical 
Data

Customers
Profiles
(bid,
resource 

requirement)

Clustering customers by 
consumption pattern

Consumption potential prediction

Dynamic programming for choosing 
the most long-term profitable 
customers combination

Serving 
cost for 
each 
customer

The most 
long-term 
profitable 
customers 
combination

Figure 1. Architecture of the proposed method.

use competitive game theory to balance the profits between
users and providers. However, they did not take into account
effects that users with different hardware requirements have
on total profits of providers.

B. Our Work

To solve the issues above, we absorb some technologies
from previous researches, including applying dynamic pro-
gramming to solving complexity of computation ability of
difference of users, adding cost on serving each user to
avoid loss of cloud providers during dynamic programming.
Different from existing methods, after exploring importance
of difference kinds of users in section II and considering
quality of service’s influence on users’ willingness to con-
tinue consumption, we decide to give users who are more
important for long-term revenue (i.e. users that consume a
lot) some discount when their bids are slightly lower than
transaction price and make sure that they are served to keep
using a specific cloud provider’s service ,thus stabilizing and
maximizing the provider’s revenue.

To achieve our goal, firstly we divide cloud users into
several groups according to their consumption behaviour by
using a revised agglomerative hierarchical clustering algo-
rithm where a cluster number estimate method is designed to
automatically select the the most suitable number of clusters
in section III. Then, a consumption potential prediction
model is built for each group of users in section IV by using
neural networks. Finally an auction process is carried out
with dynamic programming by considering bid of users and
their consumption potential prediction results in section V.
Architecture of the proposed method is shown in Figure 1.

Experiments in section VI have been conducted to com-
pare the proposed method with the existing auction methods,
and experiment results show that the proposed method can
choose users in a more reasonable way and gain larger
revenue in the long run.

0 5 10 15 20 25 30
0

5

10

15

20

Time(day)

Lo
g(

C
on

su
m

pt
io

n)

(a) User 1

0 5 10 15 20 25 30
0

5

10

15

20

Time(day)

Lo
g(

C
on

su
m

pt
io

n)

(b) User 2

Figure 2. Illustration of two users’ usage trace of resource.

II. USER ANALYSIS

To find the heterogeneity of cloud users, we conduct an
analysis of usage trace of a Google computer cell consisting
of approximately 12,000 machines [13]. The usage trace
contains scheduling events, resource demand and usage
records of 2,012,242 jobs and 144,648,288 tasks used by
993 users over 29 days. Specifically, a job comprises of
one or more tasks, each of which is accompanied by a
set of resource requirements used for scheduling (packing)
the tasks onto machines. Each task represents a Linux
program, possibly consisting of multiple processes, to run on
a single machine. Resource requirements for a task include
its requirement for CPU cores, RAM and local disk space.
The values are normalized to between 0 to 1 according to
the largest capacity of the resource on any machine in the
trace (which is 1.0). All of these requirements are specified
by users when a task is submitted [14].

We collect everyday resource usage of each user as
follows. First, we collect all user names from the job event
table. Then, for each day, we collect all jobs’ id of jobs
submitted by each user from the job event table. After
finding all jobs of a specific user, we find all tasks belonging
to this user. Finally, we sum up resource usage of each task
to get total usage of every user for each day. Since we have
3 kinds of resource usage, we sum up all resource with their
relative unit price to make the result more visible.

After getting usage trace of all users, we randomly choose
two users to analyse their usage of this month. Their usage
traces are shown in Figure 2(a) and Figure 2(b) respectively.
The two figures show that usages of different users are dif-
ferent. User 1 represents users that has low usage frequency
and low amount of usage, while user 2 represents whose
who use resources quite frequently and a lot each time.

Considering maximizing the long-term profits, user 2 is
far more important than user 1. So, in the auction process,
even in the cases where user 2 pay slight less for the same
computing power than user 1, we should choose to serve
user 2 rather than user 1. So, in our dynamic pricing method,
we estimate users consumption potential and add it to users
maximal bid price in auction process to serve more important
users when two users bid for almost same price and the price



0 1 2 3 4 5 6

x 10
9

0

100

200

300

400

500

600

700

Consumption of a month

N
um

be
r 

of
 u

se
rs

(a) Distribution of users’ monthly
consumption.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7
x 10

8

Comsumption frequence

A
ve

ra
ge

 c
om

su
m

pt
io

n 
of

 d
ay

s 
ha

ve
 c

on
su

m
pt

io
n

(b) Distribution of users’ usage pat-
tern.

Figure 3. Distribution of users.

is close to lower bound of average transaction price.
Further statistic shows that 36.7% of the users contribute

up to 72% revenue for cloud providers, which can be view
as an 80-20 rule [15] for cloud computing. The distribution
of users comes out at Figure 3(a), from which we can find
that high consumption users are rare and serving them well
can greatly affect total income for cloud providers.

The most significant differences between users’ usage pat-
tern are the usage ratio and total cost. To get a whole view,
we make a statistics on usage ratio and total cost for every
user in this month. The result is shown in Figure 3(b). The
horizontal axis correspondents to the consuming frequency
and the vertical axis represents average consumption of days
when a specific user does consume.

We can find in Figure 3(b) that except some outliers,
users can be separated into some clusters in terms of their
similar behaviour. Consumption behaviour between users in
different clusters can have large difference. So, clustering
users first and predicting users consumption potential based
on the cluster where a specific user belongs to can improve
prediction precision.

III. USER CLUSTERING

Because the distribution of users’ using behaviour does
not follow Gaussian distribution and the number of clusters
is always changing due to the variation of the market states,
the traditional clustering algorithms like k-means [16] and
BDSCAN [17] fail to carry out a good clustering result.
After trying a lot of clustering algorithms, we find that
agglomerating hierarchical clustering algorithm can bring
out reasonable clustering result in this scenario after intro-
ducing our algorithm for deciding the most suitable number
of clusters.

A. Agglomerating hierarchical clustering

The agglomerating hierarchical clustering works as fol-
lows:

• Start with the points as individual clusters.
• At each step, we merge the closest pair of clusters.

The distance measurement we use for agglomerating hierar-
chical clustering algorithm is inner squared distance.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Comsumption frequency

A
ve

ra
ge

 c
om

su
m

pt
io

n 
of

 d
ay

s 
ha

ve
 c

om
su

m
pt

io
n

 

 
outliers
not−outliers

Figure 4. Outliers detection result.

Merge process will continue until only one cluster left.
And the best clusters number choosing algorithm is proposed
in section III-C after eliminating outliers by the outliers
detection algorithm proposed in section III-B.

B. Data preprocessing to eliminate outliers

Since outliers can easily introduce unnecessary spurious
clusters, we detect and eliminate them before choosing the
best cluster number.

The way we detect outliers is based on observation that if
we over split data points (i.e. clustering data into far more
clusters that data should be clustered to), clusters that contain
only outliers will appear to have only a small number of
points.

Our method for eliminating outliers works as follows:
• Firstly, cluster data points into the clusters upper bound

which is far more larger than reasonable number of
clusters.

• Secondly, count the number of points in each clusters.
If there are too few points, i.e., less than a threshold:

α ∗ Num of points

clusters upper bound

which means non-spurious clusters should have more
points than a parameter α times average points a cluster
should has, we mark them as spurious clusters and the
points in them are detected as outliers.

The result of applying this method to detecting outliers
for user usage is shown at Figure 4 with α set to 0.1 and
clusters upper bound set to 20, for which points marked with
blue star are outliers.

For outliers, we redistribute them to give them reasonable
labels according to the cluster center they are nearest to by
applying a most appropriate prediction model to predict their
consumption potential in section IV.

C. Choosing the best clusters number

Our algorithm for choosing the best clusters number is
based on zoomed average sum-of-error’s changing trend
with the number of clusters.



0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

Number of clusters

S
um

−
of

−
er

ro
r

(a)

0 10 20 30 40 50
0

10

20

30

40

50

60

Number of Clusters

S
um

−
of

−
er

ro
r 

D
iff

(b)

0 10 20 30 40 50
0

0.02

0.04

0.06

0.08

0.1

Number of Clusters

S
um

−
of

−
er

ro
r 

di
ff 

pe
r 

po
in

t

(c)

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of Clusters

Z
oo

m
ed

 s
um

−
of

−
er

ro
r 

di
ff 

pe
r 

po
in

t

(d)

Figure 5. Illustration of the best cluster number determination method: (a)
Sum-of-errors for each number of cluster; (b) Difference of sum-of-errors
between neighbour cluster number; (c) Difference per point of sum-of-
errors between neighbour cluster number; (d) Zoomed difference per point
of sum-of-errors between neighbour cluster number.

For agglomerating hierarchical clustering algorithm, sum-
of-error reduces with increasing of cluster number. Their
relationship of google-cluster users’ usage trace is shown
in Figure 5(a). In Figure 5(b) the difference between a pair
of sum-of-error neighbour also reduces with increasing of
cluster number because agglomerating hierarchical cluster-
ing algorithm merge the nearest clusters each time.

But after dividing difference between neighbour sum-of-
error with number of points within the cluster we merged,
as shown in Figure 5(c) ,we can find neighbours of them
are not monotonous. Detecting outliers by this value is
firstly proposed in [18] and [19] uses this method in their
clustering method for choosing the best clusters number for
hierarchical clustering.

But, we observed that, with decreasing of the range of
value in smaller clusters and existing of spurious clusters, we
should zoom the result with range of newly merged cluster
to reduce influence caused by decreasing range. The result
is shown in Figure 5(d). Observing it, we can find that when
clusters number rises from one to two and from two to three
the zoomed sum-of-error difference can be reduced greatly.
But when the cluster number rises from three to four and
from four to five, reduction is far more less than previous
two merges. So we should divide users into three clusters.

To write it formally, choosing the best number of clusters
to cluster data into work as follows:

• Firstly, calculate sum-of-error for different number of
clusters with standard agglomerating hierarchical clus-
tering algorithm. The range of cluster number is chosen
from one to the specified clusters number upper bound.

• Secondly, calculate difference between neighbour pairs

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Comsumption frequenceZ
oo

m
ed

 a
ve

ra
ge

 c
om

su
m

pt
io

n 
of

 d
ay

s 
ha

ve
 c

om
su

m
pt

io
n

Figure 6. Users clustering result.

of sum-of-error.
• Thirdly, divide difference between neighbour pairs of

sum-of-error drawn from previous step by number of
points in the newly merged clusters.

• Fourthly, divide result obtained in previous step by
range of values of data in newly merged cluster.

• Finally, find the first jump point between high-efficient
reduction zoomed sum-of-error per point calculated at
previous step with low-efficient reduction points. The
last point in high-efficient reduction part is the last
reasonable merge we should make, and the clusters
number corresponding to this point is the best clusters
number we choose to merge data points to.

After applying our revised agglomerating hierarchical
clustering algorithm to cluster all users according to their
usage, clustering result is shown in Figure 6, in which three
clusters are generated automatically.

In our users’ usage prediction model, we will use this
revised algorithm to cluster users into difference clusters,
and users in the same cluster are treated as the same
type. Then, each user’s future consumption potential will be
predicted by the prediction model it belongs to. This step
will be introduced in the following section.

IV. USER CONSUMPTION POTENTIAL EVALUATION AND
PREDICTION MODEL

In order to evaluate a certain type of users’ consumption
potential during a week in the future, we build neural net-
works to do prediction. To improve precision of prediction,
we build a neural network for each type of users.

A. Input features

Input for a specific neutral network is a user’s consump-
tion frequency and average consumption of each hour when
user does consume in the previous four weeks.

Formulas for calculating input features of each week in
the previous four weeks are introduced as follows.



1) Consumption frequency: According to the actual situ-
ation of the Amazon’s dynamic auction, we use t = 1hour
as the basic data sample time interval. So, for a specific user,
his weekly consumption frequency can be calculated by

ConsumptionFrequncy =
num of used hours

hours a week

2) Average consumption of each hour when user does
consume: This feature can be generated by dividing total
consumption by the number of hours have been consumed.

This two features will be generated for all previous four
weeks and all these eight features make up our input vector
for a specific user to predict his consumption potential.

B. Output feature

Our consumption potential prediction model has only one
output, a user’s total potential resource consumption in the
following week.

C. Training

To avoid random noise of short-term usage, we choose
to update neural networks once a week. We use a sliding
window to find previous four weeks of each week in previous
two months to generate input features and actual usage of its
following week as output feature to training neural networks.

D. Testing

Prediction result of our neural network is evaluated by
comparing prediction result with actual consumption of each
specify users’ usage of next week.

E. Inheritance and Evolution

The number of users’ clusters changes over time. To
make neural network predictors’ quantity agree with number
of clusters, we introduce following ways to handle the
evolution of neural networks:

• Calculate each cluster’s center point’s distance to clus-
ters in preview auction

• If number of clusters for current run is less than or
equals to previous auction, directly inherit training
result of neural network belong to preview cluster.

• If number of clusters for current run is larger than
previous auction, we firstly inherent the most similiar
neural network from previous training result. Then we
train these neural network. The number of newly added
neural network equals to the number of newly added
clusters.

After training our neural network periodically, we can use it
to predict consumption potential for every users participating
in an auction process. The consumption potential for each
user will be used as an important factor for choosing the
best combination of users to serve in the following section.

V. DYNAMIC PROGRAMMING FOR
MAXIMIZED-REVENUE

To get the user combination which can produce the
optimal long-term revenue, we apply dynamic programming
algorithm to do auction.

Long-term revenue of serving a specify users is made up
of three parts:

Revenueuser(t) = β ∗ Potential(t) +Bid(t)− Cost(t)

where
β is a parameter, which represents discount ratio we

decide to afford to a user according to his consumption
potential.
Potential(t) stands for a user’s consumption potential.
Bid(t) stands for a user’ bid.
Cost(t) stand for cost of serving a user.
So, the optimal target for the whole system is to choose

the best users combination to maximize overall revenue with
limited resources.

To use dynamic programming to solve this optimal prob-
lem, firstly let’s bring out some definitions. Define that the
number of users is U , the number of total resource is N ,
users’ bid list is B[] , the resource request of each user is in
list R[], users’ consumption potential list is P [] and cost for
serving each user is C[]. Dynamic programming is used to
calculate the maximum revenue dp[u][r], which represents
the maximum revenue of only first u users with resource
requirement of r participating in auction.

Initially, none of users participate in auction, so the
maximal revenue of zero users is 0.

dp[0][1:r]=0; (1)

Then, we keep adding one more users that participating
in auction until all of users are added. After each user
participate in auction, the maximal revenue can be evaluated
by following formula:

dp[u+ 1][r] ={
dp[u][r] If r ≤ R[u]

max(dp[u][r], dp[u][r −R[u]] +B[u] + β ∗ P [u]− C[u]) Otherwise
(2)

In the first case, after adding a new user, if his resources
demand is larger than residual resources of the whole
system, we can not serve him and the optimal revenue
of serving users containing him is equal to serving users
without him taking part in auction.

For the second case, if resource requirement of a new
user can be satisfied, then the maximal revenue after adding
this user to users participating in auction is the larger one
between the maximal revenue of without serving the user
and serving the user.

Users’ choosing result is saved in A = [u][r][j], which
means to maximize revenue when the first u users with r



resources requirement come for auction, user j should be
served if A[u][r][j] = 1.

Overall dynamic programming algorithm for maximizing
long-term revenue is summarized in Algorithm 1.

Algorithm 1 Dynamic Programming For Maximized-
Revenue

1: Input:
2: Total User Number U
3: Total Resource Number N
4: Users’ maximum bid list B = []
5: Users’ consumption potential list P = []
6: Discount ratio β
7: Users’ serving cost list C = []
8: Users’ resource requirement list R = []
9: Auction result list A = [][][]

10: for r = 0 : N do
11: dp[0][r] = 0;
12: for u = 0 : U do
13: A[0][r][u] = FALSE;
14: end for
15: end for
16: for u = 0 : U do
17: for n = 0 : N do
18: if n < R[u] then
19: dp[u+1][n] = dp[u][n];
20: for k = 0 : U do
21: A[u+1][n][k] = A[u][n][k];
22: end for
23: else if dp[u][n] > dp[u][n-R[u]]+B[u]+β*P[u]-C[u]

then
24: dp[u+1][n] = dp[u][n];
25: for k = 0 : U do
26: A[u+1][n][k] = A[u][n][k];
27: end for
28: else
29: dp[u+1][n] = dp[u][n-R[u]]+B[u]+β*P[u]-C[u];
30: for k = 0 : U do
31: A[u+1][n][k] = A[u][n-R[u]][k];
32: end for
33: A[u+1][n][u] = TRUE;
34: end if
35: end for
36: end for
37: Output:
38: Maximized-Revenue is dp[U ][N ]
39: Auction result Record is A[U ][N ]

VI. EXPERIMENTS

In this section, experiments are conducted to show the
effectiveness of the proposed method. We compare the pro-
posed method with a state-of-the-art auction method — view
cloud allocation as a multidimensional knapsack problem

5 10 15 20
0

0.2

0.4

0.6

0.8

1

Auction failed times

1−ζx

D
ro

po
ut

 r
at

e

(a) Users’ departure rate

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

Price

5 * sqrt(1−price2)

C
om

in
g 

R
at

e

(b) Users’ coming rate.

Figure 7. Users changing hypotheses.

extended with an additional (reserve price) constraint. Their
performances are evaluated based on total revenue during a
long time.

A. Experiment Procedure

Google-cluster data provides the consumption record
of 993 users in a month. But unfortunately they use a
static pricing strategy without considering some significant
factors we need such as the maximum acceptable price,
the interaction between auction result and users’ auction
decisions. Moreover, the Amazon EC2 does not seem to
make the users’ data public, though Amazon EC2 uses a
dynamical pricing strategy. Therefore, we try to combine the
distribution characteristics of google-cluster data and four
hypotheses to generate more reliable synthetic data.

The four hypotheses are listed as follows.
• Hypothesis 1: A certain user’s bid, resource require-

ment and auction frequency follow Gaussian distribu-
tion N(µ, σ2). Parameters µ and initial σ of Gaussian
distribution for each user are decided based on the users
group a specific user belongs to.

• Hypothesis 2: If a certain user fails current auction, in
the next auction the variance of his bid will diverge.
On the contrary, if a certain user succeeds, in the next
auction his bid will converge.Figure 8(a) is an example
of how a user’s unit resource bid changes with auction
times.

• Hypothesis 3: we model users’ departure rate as below

DepartureRate = 1− ζ2

where ζ is parameter set different according to whether
a user win a bid process. For individual users, after
observation, we find that users departure rate is higher
when they fail in auction. So, we set departure rate of
users who succeed in auction to 0.01% and users who
fail in auction to 0.2%. Figure 7(a) illustrates user’s
departure rate when he continuously fails in auction.

• Hypothesis 4: To model new users’ arrival, we assume
that new users’ arrival rate is increasing with decreasing
transaction price. And the curve of this model is shown
at Figure 7(b).



0 50 100 150 200 250 300
0

0.005

0.01

0.015

0.02

0.025

0.03

Auction times

B
id

 u
ni

t p
ric

e

(a) Variation of a user’s unit resource
bid.

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Auctimes

R
es

ou
rc

e 
re

qu
ire

m
en

t

(b) Variation of a user’s resource re-
quest.

Figure 8. Variation of a user’s bid info.

With those four hypotheses, we develop an on-line data
generation algorithm.

1) Users initialization: To initial users’ coming at the
first auction, we follow these steps:

a) According to data distribution characteristics of google-
cluster data, we initialize the type number of users to
K by calculating the optimal number of users’ types via
hierarchical clustering algorithm. Then we calculate the
consumption frequency and mean consumption quantity of
every interval respectively.

b) We’ll generate K groups data of the first interval
respectively, where every group contains the following data:

• Maximum willing deal unit price
• Consumption quantity
• The probability of attending auction
• Deal price generated by dynamic programming
• The first deal record containing deal price and maxi-

mum willing total amount
The distributions of the first three values for each type of
users are different, which can be obtained according to the
consumption pattern of each type of users.

During early auction intervals biding trace is not long
enough for training neural networks for prediction, so we
only simply use greedy algorithm with dynamic program-
ming to do auction and record these auction histories.

After logging enough data, we can train neural networks
and use them to predict consumption potential of each user
and do long-term revenue maximal auction.

2) Part one: For the first five weeks: We only apply
simple greedy algorithm with dynamic programming to do
auction process.

After auction process, we update the four parameters
listed as follows

• Whether or not a user can purchase the product suc-
cessfully determines the variances change of the three
Gaussian distributions which can be used to generate
maximum willing unit price.

• Generate consumption quantity randomly according to
Gaussian distribution.

• Generate the probability of consuming randomly ac-
cording to range of the type user.

• Calculate deal price by dynamic programming and
generate deal record.

After updating, all of these dates are logged for clustering
users and training neural networks for auctions after the fifth
weeks.

In this way, we can generate the first five weeks’ data
used to build neural network at the first time.

3) Part two: After the fifth week: After getting enough
data for training neural networks, we can apply our whole
algorithm to do auction process.

When obtaining one week data, we are supposed to cluster
again via agglomerating hierarchical clustering algorithm.
For each user, if his type in each week during five weeks
doesn’t meet the requirement that the number of a certain
type is more than all the other types, we ignore this data
record, i.e. abandon it.

To train neural networks, we use the first four nearest
weeks’ data as the input of neural network and use the fifth
weeks data as the output to train neural network.

Then, we predict all users’ consumption potential with
newly trained neural networks.

Finally, we use dynamic programming to choose the most
profitable users combinations, and auction results are logged
for following runs.

4) Users’ usage and max willing offered price generation:
Every interval data is generated according to the last interval
data with following steps:

• Determine the Gaussian parameters change which can
be used to generate maximum willing unit price ac-
cording to whether a user can purchase the product
successfully .

• Randomly generate consumption quantity according to
Gaussian distribution.

• Randomly generate the probability of consuming ac-
cording to consumption range of the type user.

• Calculate deal price by adding consumption potential P
with maximal willing price for each user via dynamic
programming and generate deal record.

5) User departure: Any user can depart at any time. We
model this by using hypothesis 3 and we remove all exiting
users before the coming of new auction.

6) User arrival: New users arrive before auction take
place. We use hypothesis 4 to model their arrival rate. New
users are chosen according to the distribution of users who
take part in auction for google-cluster i.e. each time we add
a user whose consumption pattern is produced by choosing
one user’s pattern from google-cluster’ customers randomly.

B. Experiment Evaluation

To evaluate our method, we compare our auction method
versus the method brought out by Sergei et al.[8]. They view
cloud allocation problem as a multidimensional knapsack
problem extended with an additional constraint (reserve
price) and use dynamic algorithm to solve it.



0 100 200 300
0

0.01

0.02

0.03

0.04

0.05

auction times

au
ct

io
n 

pr
ic

e

 

 

our algorithm
dp only

(a) Transaction Price Comparison

0 100 200 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

auction times

au
ct

io
n 

re
ve

nu
e

 

 

our algorithm
dp only

(b) Transaction Revenue Comparison

Figure 9. Experiment result.

Initially, we make 400 people participate in auction and
the consumption behaviour of them are decided according
to users’ distribution we obtain in section II.

These two auction methods run for 300 auction intervals,
and we compare transaction price and transaction revenue
of cloud providers between these two methods.

C. Experiment Result

Transaction price and transaction revenue graphs of ap-
plying two method for auction are shown in Figure 9(a) and
Figure 9(b).

Transaction price graph Figure 9(a) shows that compared
with existing method, transaction price generated by our
method is more stable than the one conducted by other
method, which makes it more convenient for users to auction
with our method compared with using other method. In
addition, transaction price of our method is higher than
transaction price conducted by other methods and make
cloud providers receive more unit profit.

Transaction revenue graph Figure 9(b) shows that after
applying our method, cloud providers can generally gain
higher total revenue compared with existing method, which
make cloud providing more profitable.

After comparing on these two most important indexes for
cloud pricing method in cloud providers’ view, our method
is far more better than existing method and can be used as
a dynamic pricing guideline for cloud providers.

VII. CONCLUSION

In this paper, we have presented a long-term revenue max-
imization algorithm to provide a more reasonable auction
method for IaaS cloud provider. Firstly we partition users to
different groups based on their consumption behaviour. Then
we predict each user’s consumption potential by constructing
a neural network based predictor for each type of users. Fi-
nally, dynamic programming is utilized to choose best users
to serve with considering both bid price and consumption
potential of each user. Experimental results have confirmed
the effectiveness of the proposed method.

REFERENCES

[1] (2015) Amazon EC2 spot instances. [Online]. Avail-
able: http://aws.amazon.com/ec2/purchasing-options/spot-
instances/

[2] O. A. Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and
D. Tsafrir, “Deconstructing Amazon EC2 spot instance pric-
ing,” in Cloud Computing Technology and Science (Cloud-
Com), 2011, pp. 304–311.

[3] U. Lampe, M. Siebenhaar, A. Papageorgiou, D. Schuller,
and R. Steinmetz, “Maximizing cloud provider profit from
equilibrium price auctions,” in 2012 IEEE Fifth International
Conference on Cloud Computing, 2012, pp. 83–90.

[4] P. Bonacquisto, G. D. Modica, G. Petralia, and O. Tomarchio,
“A strategy to optimize resource allocation in auction-based
cloud markets,” in 2014 IEEE International Conference on
Services Computing, 2014, pp. 339–346.

[5] S. Zaman and D. Grosu, “A combinatorial auction-based
mechanism for dynamic vm provisioning and allocation in
clouds,” IEEE Transactions On Cloud Computing, vol. 1,
no. 2, pp. 129–141, 2013.

[6] “Truth revelation in approximately efficient combinatorial
auctions,” Journal of the ACM, pp. 1–26, 2002.

[7] H. Xu and B. Li, “Dynamic cloud pricing for revenue
maximization,” in Proc. of the 3th IEEE Transactions On
Cloud Computing, 2013, pp. 158–171.

[8] S. Chichin, Q. B. Vo, and R. Kowalczyk, “Adaptive market
mechanism for efficient cloud services trading,” in 2014 IEEE
International Conference on Cloud Computing, 2014, pp.
705–712.

[9] W.-T. Tsai and G. Qi, “DICB: Dynamic intelligent customiz-
able benign pricing strategy for cloud computing,” in 2012
IEEE Fifth International Conference on Cloud Computing,
2012, pp. 654–661.

[10] P. K. Dutta, Strategies and Games:Theory and Practice. MIT
Press, 1999.

[11] P. Xiao and Z.-G. Hu, “Hybrid game based virtual resource
pricing model in cloud environment,” Computer Integrated
Manufacturing Systems, vol. 20, no. 1, 2014.

[12] M. Mihailescu and Y. M. Teo, “Dynamic resource pricing
on federated clouds,” in 2010 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing (CCGrid),
2010, pp. 513–517.

[13] (2014.) Googleclusterdata - traces of google workloads. [On-
line]. Available: http://code. google.com/p/googleclusterdata/

[14] C. Reiss, J. Wilkes, and J. Hellerstein, Google cluster-usage
traces: format+schema, version of 2013-05-06 ed.

[15] J. M. Juran, Quality Control handbook. McGraw-Hill New
York, 1951.

[16] J. M. Queen, “Some methods for classification and analysis
of multivariate observations,” in Proc. of the 5th Berkeley
Symposium on Mathematics, Statistics, and Probabilities,
1967, pp. 281–297.

[17] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-
based algorithm for discovering clusters in large spatial
databases with noise,” in Proc. of the 2nd International
Conference on Knowledge Discovery and Data Mining, 1996,
pp. 226–231.

[18] Z. He, X. Xu, and S. Deng, “Discovering cluster-based local
outliers,” in Pattern Recognition Letters, 2003, pp. 1641–
1650.

[19] C. Zhong, D. Miao, R. Wang, and X. Zhou, “DIVFRP: An
automatic divisive hierarchical clustering method based on
the furthest reference points,” Pattern Recognition Letters, pp.
2067–2077, 2008.


