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Abstract—Vehicle tracking, significant in the computer vision
using machine learning method, allows the vehicle to comprehend
its immediate environment and therefore, enhances the intelli-
gence of the vehicles and the safety of vehicle occupants. We
propose a novel tracking algorithm that can work robustly under
challenging circumstances such as road scene where several kinds
of appearance and motion changes of a tracking object occur.
Our algorithm is based on the perceptual hashing algorithm
(PHA) and the color, low-frequency and rotation information are
considered. By means of PHA, our tracker generates a single iden-
tification at each frame. The sliding windows produce a series of
candidates between consecutive frames so that the new position of
tracking object can be updated by comparing the binary code of
candidates and identification. In the experiment, the quantitative
and qualitative results are expressed by center location error
(CLE) and VOC overlap ratio(VOR). Compared to the advanced
tracker at present, PHA tracker shows its robustness when
confronting violent changes of noise, illumination, background
clutter and part occlusion, which demonstrates its state-of-the-
art performance in the field of dynamic vehicle tracking.

I. INTRODUCTION

The research of object tracking plays an important role
in computer vision community due to its wide range of
applications such as automatic surveillance, human-computer
interaction, activity recognition and robotics. Among them,
the application in Intelligent Transportation System(ITS) such
as [1] [2] [3] [4] becomes more and more significant. The
data from tachograph can be dealt with automatically and the
development of driverless vehicles naturally depends on it as
perceptual analysis. For a long time, the major challenges of
visual tracking lie in the rapid and tremendous appearance
variation due to noise, occlusion, illumination, background
clutter and scale changes. In order to solve these problems,
tracking method requires more accurate observation model as
well as efficient tracking model with the help of machine
learning. There are numerous algorithms proposed in recent
years, which can be categorized into region-based, model-
based, feature-based and active contour-based algorithm.

The region-based algorithm such as [5] segments the video
objects and establishes the connections between segmented
regions in consecutive frames to track the object. It performs
sensible in multi-objects tracking but weak in occlusion. On
contrast, the model-based algorithm like [6], which use the
prior knowledge to obtain the model of the object, can deal
with the occlusion problem. Therefore, this method is widely
applied to human tracking. The limitations stems from its

Fig. 1: Perceptual Feature Extraction

compulsory prior knowledge including appearance model and
structure. The feature-based one [7] extracts the features of
the object and combine them as high level characteristics. The
matching of the features between frames guides the tracking
procedure. However, the high complexity of computation de-
creases the utility. As for active contour-based algorithm [8], it
proves efficient but sensitive to the initial condition. Although
lots of advanced trackers based on traditional method, such as
Frag [9], IVT [10], SemiT [11], TLD [12], VTD [13], LSK
[14], Struck [15], VTS [16] and MTT [17], are presented, the
visual tracking still has a long way to develop.

In this paper, we address the problem of designing a robust
and discriminative perceptual hashing algorithm and bestowing
the responsibilities of extracting features for the tracking
framework. The philosophy of our method is to discover and
utilize the perceptual information, such as color and low-
frequency information, to the efficient and stable visual track-
ing. The perceptual information such as [18] mainly refers to
DCT coefficients and color distribution. Only the perception of
tracking object results in weak performance of occlusion so the
features of spatial context make sense. Moreover, to deal with
the rotation invariance, geometric moments are introduced. For
all features extracted, a hashing method reduces them to a
binary matrix, the corresponding identification. In our tracking
system, the object can be discovered in the consecutive frames
while updating with the discriminative identification. The
experiment bears out the accuracy and robustness compared
with advanced tracking algorithm. Owing that our perceptual
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Fig. 2: Framework of the proposed Perceptual Hashing Tracking

hashing algorithm is insensitive to illumination, occlusion and
background clutter, it is suitable for vehicle tracking, part of the
automated perception systems, which makes difference in ITS.
It allows the vehicle to comprehend its immediate environment
and therefore, enhances the intelligence of the vehicles and the
safety of vehicle occupants. Furthermore, the accurate tracking
makes it possible to realize the ultimate goal of autonomous
automobile driving.

In summary, we propose a robust and discriminative visual
tracker that combines the perceptual feature, context infor-
mation and geometric invariant moments to a binary code as
unique identification via local-sensitive hashing algorithm [20].
The experiment performs its state-of-art, especially tackle the
vehicle tracking. To our knowledge, it is the first time that the
perceptual hashing algorithm is applied to vehicle tracking.
Undoubtedly, the high performance and wide applicant range
demonstrates its long-tern development.

Fig. 3: Severe occlusion may occur in the visual tracking.

II. PERCEPTUAL HASHING TRACKING

The workflow of our method is summarized in Figure 2.
In the preprocessing of each frame, the block image strategy

makes it simple to process and evaluate the tracking object.
Generally, the feature-based algorithm gives each frame a
discriminative feature vector so we construct the vectors with
perceptual feature of tracking object and context. Then, the
perceptual feature is transformed into a series of binary codes
via hash computation for fast matching.

A. Frame Preprocessing

For the frame of t, we define the region of tracking object
as IT and the context as IC. The purpose of introducing the
context is that severe occlusion may mislead the tracker to miss
the target as Figure 3, especially for most current vehicle detec-
tion and tracking systems based on particle filter. The contexts
of the tracking object are sampled in four directions so that
the tracker is able to recognize the object by the surrounding
environment when confronting occlusion. In order to obtain the
same length of the final feature, we resize IT to (64, 64). As
the Figure 1 shows, the contexts are segmented from four di-
rections of the tracking object with ( 12 length(I

T), width(IT))
and (length(IT), 1

2width(I
T)). Naturally, they can be resized

to (32, 64) and (64, 32). In our block images strategy, each
image of (64, 64) is separated into 64 blocks with the size of
(8, 8). By way of the proper weight of object and context, we
sample the blocks of context to decrease the number of them
to 64. Therefore, the preprocessed data includes 64 blocks of
tracking object BT and 64 blocks of the contexts BC, from
which the perceptual feature is extracted.

B. Perceptual Feature extraction

The perceptual feature makes preparations for the hashing
computation and depicts the basic characteristics of the track-
ing object. In this part, we will calculate the perceptual feature
PT and PC for each block of tracking object and the context.
P is a 21-dimension vector including 8 DCT coefficients D,
8 color histogram H and 5 geometric moments M as shown
in (1).

Pi = Hi +Di +Gi, i ∈
{
IT, IC

}
(1)
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1) Image histogram learning: The color information can be
expressed by image histogram via statistical method. Each of
its value is an integer representing the frequency of occurrence
of a particular section of intensity values. The corresponding
8-dimension feature value H(r) is defined as:

H(r) =
W∑
p=1

Q(Ip, r), r = 1, 2, ..., Nh (2)

where W denotes the number of pixels of a block, Nh is the
total number of sections (Nh = 8) and Q(Ip, r) is zero except
when intensity value Ip (at pixel location p) belongs to section
r.

2) Low-frequency information: In the signal processing, the
low-frequency information generally gets obtained by Discrete
Cosine Transform, which outputs the feature values with the
equivalent count of inputs. Thus, all pixels of a block is used
as inputs yk. The DCT coefficients are found out through (3).

Dm =
64∑
k=1

yk cos

[
π

8
m

(
k +

1

2

)]
(3)

We select 8 discriminative values in the upper left corner
of DCT feature matrix where the low-frequency information
gathers. Through DCT and feature selection, the 8-dimension
vector D, mainly standing for the substantive information of
profile, is obtained.

3) Rotation invariance: Until now, the perceptual feature
performs good in profile and color, but lack of rotation as
well as scaling invariance. To boost the sphere of application,
we bring in the geometric invariant moments [19], a set of
statistical features of image shape. They are not sensitive to
rotation, scaling and other normal operations and have many
kinds of expression types such as Hu and Zernike moment.
Considering the computation complexity in tracking issues, our
method uses Hu moments as follows, and ηij denotes the (i+j)
order normalized central moment of the image

M1 = η20 + η02

M2 = (η20 − η02)
2
+ 4η211

M3 = (η30 − 3η12)
2 + (3η21 − 3η03)

2

M4 = (η30 + η12)
2 + (η21 − 3η03)

2

M5 = (η30 − 3η12)(η30 + η12)[(η30 + η12)
2 − 3(η21 + 3η03)

2]

+ (3η21 − η03)(η12 + η03)[3(η30 + η12)
2 − 3(η21 + η03)

2]

M6 = (η20 − η02)[(η30 + η12)
2 − (η21 + η03)

2]

+ 4η11(η30 + η12)(η21 + η03)

M7 = (3η12 − η30)(η30 + η12)[(η30 + η12)
2 − 3(η21 + η03)

2]

+ (3η12 − η30)(η21 + η03)[3(η30 + η12)
2 − (η21 + η03)

2]

By comparing the 7 Hu moments of original and rotated image,
we select the M1,M3,M4,M5,M6 as Gi as they are more
invariant for rotation.

C. Locality-sensitive Hashing and Fast Matching

To compare different features of images fast, the perceptual
features matrix is transformed to a binary code by locality-
sensitive hashing (LSH), widely used in similarity search [20].

Algorithm 1 Perceptual Hashing Tracking

1: Input: Frame(t), St−1

2: Sliding windows IT and cosresponding IC

3: repeat
4: Resize the IT to (64, 64), the IC to (32, 64) and (64,

32)
5: Divide them into 128 (8, 8) blocks
6: repeat
7: Calculate the grey histogram to obtain H
8: Calculate the D via Discrete Cosine Transform
9: Calculate the geometric moment G

10: PB = HB +DB +GB

11: until No block is unprocessed
12: Combine the PB to P
13: Find the Ct through hashing algorithm
14: until No sliding window is available
15: Compare St with Ct to find the most similar one Ĉt

16: Update St with Ĉt

For each block feature vB ∈ R
16, we construct m correspond-

ing hashing functions, one of which is define as follows:

hBi(vB) = sign(wT
Bi
vB + b) (4)

where wBi ∈ R
16 is generated randomly between [−1, 1]

satisfying Gaussian distribution and b is set to 0. Each block
B can generate m binary codes through m hashing functions
{hB1(·), hB2(·), · · · , hBm(·)}.

Then, the binary code Ĉt, composed of all the binary codes
of blocks, becomes the unique single identification St at time
t. According to the sliding windows S at the time of (t+ 1),
there are a set of candidate code defined as CS

t+1. The position
of tracking object is updated as follows:

St+1 = Match(CS
t+1,S

t) (5)

where Match(·) function selects the most similar identifica-
tion between the object of t and series of sliding windows by
calculating the minimum Hamming distance.

In general, Algorithm 1 displays the details. The proposed
method highlights the importance of perceptual feature in our
tracker and speed up the matching process through hashing al-
gorithm. The next part will demonstrate fast speed, robustness
and wide-application of our method after compared to most of
the advanced tracker at present.

TABLE I: Property of experiment for each video

Datasets Property

BlurCar1, 3, 4 MB, FM

Car, Car4 IV, SV

Car1 IV, SV, MB, FM, BC, LR

Car2 IV, SV, MB, FM, BC

CarDark, CarDark2 IV, BC

CarDay FM, SV, DEF
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Fig. 4: Qualitative tracking results of the five trackers over four representative frames of the eight video sequences ( BlurCar1,
BlurCar3, BlurCar4, Car, Car2, Car4, CarDark, CarDay) that are aligned from left to right and from up to down. Some trackers
may lose the target as their tracking boxes disappear in some frames.

III. EXPERIMENTS

A. Experiment Initialization

Using the 8 traffic video sequences which are publicly
available [21] and 2 datasets made by us, our proposed method
(PHA) was compared with 5 state-of-the-art tracking methods:
Visual Tracking via Dense Spatio-Temporal Context Learning
(STC) [22], Compressive Tracking (CT) [23], Locally Order-
less Tracking (LOT) [24], Object Tracking via Sparsity-based
Collaborative Model (SCM) [25], L1 Tracker Using Acceler-
ated Proximal Gradient Approach (L1APG) [26]. Captured in
the scene of road, these video sequences in Table I contain
various events including Illumination Variation (IV), Scale
Variation (SV), Deformation (DEF), Motion Blur (MB), Fast
Motion (FM), Background Clutters (BC) and Low Resolution
(LR).

Same initializations, which mainly refer to the tracking
box, were set to all methods for fair comparison and best
parameters led each method to optimal performance. For the
initial condition of the proposed tracker, it performs object
localization using a sliding-window-search scheme with a
search radius of 30 pixels. The average running time of our
implementation by OpenCV is about 0.02 second per frame
on a workstation with an Intel Core i5 3.0GHz processor and
8G RAM. For each tracking region, three kinds of features
are extracted, including DCT low-frequency information, grey
histogram and geometric moments. Precisely, all the images
are divided into 8 × 8 cells, each of which is concerned with a
21-dimensional vector. Therefore, for each sliding window, we
have a 128 × 21 feature matrix (64 × 21 tracking information

and the same number of the context information), by means
of which the mean-hashing algorithm generates 128 × 21
binary codes as identification. Note that all aforementioned
parameters are changeless throughout the test of all datasets.

TABLE II: Center location error (CLE) (in pixels) (average at
all frames). Red fonts indicates the best performance while the
blue fonts indicates the second best one.

Datasets Ours CT STC L1-APG LOT SCM

Car 14 78 24 67 112 47

Car1 12 45 23 16 28 59

Car2 20 98 19 21 25 42

Car4 11 109 9 137 78 43

BlurCar1 10 92 7 12 11 98

BlurCar3 21 82 220 78 121 63

BlurCar4 31 76 19 23 56 61

CarDay 19 93 43 31 24 34

CarDark 4 21 5 2 7 17

CarDark2 24 103 40 42 49 67

Average CLE 17 80 40 43 51 53

B. Qualitative Performance Comparison

Figure 4 shows the qualitative tracking results of the
5 trackers overall representative frames of traffic video se-
quences. The specific dataset CarLongDark, totally 4412
frames, is a very long video which test the robustness and
illumination variation. The Figure 5 shows that only our tracker
succeeds in all the frames without losing the target.

C. Quantitative Performance Comparison

In the empirical comparison of trackers, two popular eval-
uation criteria are used: center location error (CLE) and VOC
overlap ratio (VOR) between the predicted bounding box Bp
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Fig. 5: Sample frames of a sequence owning 4412 frames. Although the scale, illumination and deformation changes a lot in
some frames, the proposed tracker manages to recover the correct position.
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Fig. 6: Quantitative comparison of the 6 trackers (PHA represents ours) in CLE on the 4 video sequences. (The data that cannot
cover all frames means to lose the target)
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Fig. 7: Quantitative comparison of the 6 trackers (PHA represents ours) in VOR on the 4 video sequences.

and ground truth bounding box Bgt. The success rate refers to
the situation when VOR is greater than 0.5.

V OR =
area(Bp ∩Bgt)

area(Bp ∪Bgt)
(6)

To avoid accident, each video sequence is processed by
every tracker twice. Table II and Table III show the quantitative
results in which our tracker achieves the best or second
performance in most sequences both in terms of center location
error and success rate. By visualizing the concrete data, Figure
6 and 7 demonstrates the robustness of our method and
better capability of vehicle tracking. Although STC performs
excellent in the experiment, it may fall down such as BlueCar3.
Furthermore, the average high score of VOR shows the good
adaptability to complex and multivariate environment.

D. Effect Analysis

According to the aforementioned comparison in both qual-
ity and quantity, the proposed tracker have revealed excel-
lent performance for vehicle tracking. Specifically, we clarify
omnifarious evaluations corresponding to all classic tracking
challenges.

Rotation and pose variation. The car in the Car, Car2
and CarDay sequences undergoes in-plane rotation. In the Car
sequence, when violent rotation variation happens (See #1 and

#73), STC, L1-APG and our method pass in the beginning.
However, the performance of L1-APG gets worse as time
passes by while STC fails at the next frames in the face of one
single error. Thus, the geometric moments we introduce in the
main theory make sense and finally only ours gets through the
challenge.

TABLE III: Success rate (SR) (%).

Datasets Ours CT STC L1-APG LOT SCM

Car 73 20 60 30 22 40

Car1 83 38 75 80 72 45

Car2 86 15 100 100 46 37

Car4 82 15 40 19 9 18

BlurCar1 98 7 98 84 82 32

BlurCar3 63 31 25 29 72 30

BlurCar4 70 10 98 90 77 43

CarDay 86 45 75 80 85 60

CarDark 100 2 100 100 88 0

CarDark2 92 10 45 65 70 40

Average SR 83 20 71 67 62 39

Illumination, scale and pose variation. There are large
illumination variations in the video sequences of Car2, Car4
and CarDark. Especially, the appearance of the object in the
Car4 changes tremendously due to the ambient lights and shad-
ows (See #204 and #342 in the Car4 sequence). Both STC and
our method adapt to these illumination variations well. Further
to say, the excellent flexibility of illumination helps nighttime
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tracking a lot. Likewise, severe scale and pose variation happen
in the CarDay and only our method performs favorably. Note
that our method overcomes the difficulties of scale variation
in the road scene just via sliding-window updating in these
sequences. We don‘t introduce any features except geometric
moments to solve the problem of scale-variation but the low-
frequency information shows good suitability.

Background clutter and abrupt motion. In the Blur-
Car1, BlurCar3 and BlurCar4, the running cars undergo fast
movements and abrupt motion. In the BlurCar1, our proposed
method achieves the best performance at nearly each frame
(even indistinguishable #11 and #23). Despite of the other
tracker not losing the target, they cannot track the vehicle
precisely during abrupt motion for they just make adjustments
after the challenging variation. Hence, we consider the pro-
posed method to be fast and robust.

IV. CONCLUSION

In this paper, we have proposed a robust visual tracker that
learns the discriminative binary codes of every frame for the
vehicle tracking system. To generate the single identification of
each frame, a robust and effective perceptual hashing algorithm
is applied. To imitate the perception of human visual system,
we select the low-frequency, color and rotation information to
obtain the perceptual feature. To perform the feature extraction,
we build a perceptual algorithm based on DCT, grey histogram
and geometric moments. In consideration of occlusion, we
capture the feature of not only tracking object but also contexts.
Compared with several progressive tracker, we empirically
certify that our tracker is able to achieve more accurate and
robust results in challenging complicated traffic video datasets.
Thus, our tracker is very suitable for application in intelligent
vehicle detection and tracking system. In the future, we are
supposed to construct a framework for car perception using
our tracker, which will play more practical and convincible
roles in ITS.
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