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Abstract
Domain adaptation tasks such as cross-domain sen-
timent classification have raised much attention in
recent years. Due to the domain discrepancy, a sen-
timent classifier trained in a source domain may
not work well when directly applied to a target do-
main. Traditional methods need to manually select
pivots, which behave in the same way for discrim-
inative learning in both domains. Recently, deep
learning methods have been proposed to learn a
representation shared by domains. However, they
lack the interpretability to directly identify the piv-
ots. To address the problem, we introduce an end-
to-end Adversarial Memory Network (AMN) for
cross-domain sentiment classification. Unlike ex-
isting methods, the proposed AMN can automati-
cally capture the pivots using an attention mecha-
nism. Our framework consists of two parameter-
shared memory networks with one for sentiment
classification and the other for domain classifica-
tion. The two networks are jointly trained so that
the selected features minimize the sentiment classi-
fication error and at the same time make the domain
classifier indiscriminative between the representa-
tions from the source or target domains. Moreover,
unlike deep learning methods that cannot tell which
words are the pivots, AMN can offer a direct vi-
sualization of them. Experiments on the Amazon
review dataset demonstrate that AMN can signifi-
cantly outperform state-of-the-art methods.

1 Introduction
Sentiment classification is an important task in natural lan-
guage processing and is essential to understand user opinions
in social networks or product reviews [Pang and Lee, 2008;
Liu, 2012]. This task aims to identify the overall sentiment
polarity (e.g., positive or negative) of a document. Traditional
approaches for sentiment classification are based on support
vector machine with handcrafted features such as bag-of-n-
grams [Wang and Manning, 2012]. Recently, deep learning
models [Socher et al., 2013; Tang et al., 2015] are exploited
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in sentiment classification to automatically learn a good rep-
resentation. Unfortunately, effective deep learning methods
are highly dependent on large amounts of labeled training
data which requires time-consuming and expensive manual
labeling. In order to alleviate the dependence on a large num-
ber of labeled data, cross-domain sentiment classification,
which utilizes labeled data from related domains, becomes
a promising direction.

Over the last decade, many methods have been proposed
for cross-domain sentiment classification. Blitzer et al.
[Blitzer et al., 2007] proposed a Structural Correspondence
Learning (SCL) method to learn a joint low-dimensional fea-
ture representation for the source and target domains. Sim-
ilarly, Pan et al. [Pan et al., 2010] proposed a Spectral
Feature Alignment (SFA) method to align the pivots with
the non-pivots to build a bridge between the source and tar-
get domains. However, these methods need to tediously
select the pivots based on criterions such as the frequency
in both domains [Blitzer et al., 2006], the mutual informa-
tion between features and labels on the source domain data
[Blitzer et al., 2007], and the mutual information between
features and domains [Pan et al., 2010]. Different from
these methods, Glorot et al. [Glorot et al., 2011] proposed
a Stacked Denoising Autoencoders (SDA) to automatically
learn a unified feature representation for documents from a
large amount of data in all the domains. Similar to this
work, Chen et al. [Chen et al., 2012] proposed a Marginal-
ized Stacked Denoising Autoencoders (mSDA) model to im-
prove SDA in terms of the speed and scalability to high-
dimensional data. Ganin et al. [Ganin and Lempitsky, 2015;
Ganin et al., 2016] proposed the Domain-Adversarial train-
ing of Neural Networks (DANN) for domain adaptation to
achieve promising results on benchmark datasets. They use
a gradient reversal layer to reverse the gradient direction in
order to produce representations such that a domain classi-
fier cannot predict the domain of the encoded representation,
and at the same time, a sentiment classifier is built on the
representation shared by domains to reduce the domain dis-
crepancy and achieves better performance for cross-domain
sentiment classification. However, these deep models lack
interpretability to directly identify the pivots.

In order to improve the interpretability of deep models, we
propose an end-to-end Adversarial Memory Network (AMN)
for cross-domain sentiment classification. Our approach can
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automatically capture the pivots using an attention mecha-
nism without the manual selection. Actually, the memory
network can capture the corresponding important words ac-
cording to the task of interest using the attention mecha-
nism. In order to capture these pivots automatically, we make
use of their characteristics that pivots are the important sen-
timent words for sentiment classification and are shared in
both domains. Specifically, our framework consists of two
parameter-shared memory networks, where one network is
for sentiment classification and the other is for domain clas-
sification. The two networks are jointly trained so that the
selected features can minimize the sentiment classification
error and in the meanwhile, make the representations from
the source and target domains indiscriminative for the domain
classifier. In this way, the proposed AMN can focus on learn-
ing pivots. Experiments on the Amazon reviews benchmark
dataset demonstrate that AMN outperforms state-of-the-art
methods.

Our contributions are summarized as follows:

• The proposed AMN model can automatically capture the
pivots using the attention mechanism without manually
selecting pivots.

• Unlike deep learning based methods that cannot tell us
which words are the pivots, the proposed AMN model
can offer a direct visualization of them, which makes the
representations shared by domains more interpretable.

• Empirically the proposed AMN method can achieve bet-
ter performance than the state-of-the-art methods.

2 Related Works
Traditional methods need to manually select pivots. For ex-
ample, the SCL method [Blitzer et al., 2007] is proposed to
learn a low-dimensional feature representation for source and
target domains. The efficacy of SCL depends on the choice
of pivots and it assumes that pivots are frequently occurring
words in both domains and they are also good predictors of
source domain labels. Thus, they select pivots with highest
mutual information between features and source labels. Simi-
larly, the SFA method [Pan et al., 2010] aims to build a bridge
between source and target domains by aligning pivots to non-
pivots. They argue that the pivot selection method of SCL can
help identify features relevant to the source labels but there is
no guarantee that the selected features act similarly in both
domains.

Recently, some efforts have been initiated based on deep
learning models for cross-domain sentiment classification.
The SDA model [Glorot et al., 2011] is the first to automat-
ically learn a unified feature representation for documents
from large amounts of data in all the domains. The mSDA
model [Chen et al., 2012] addresses the high computational
cost and scalability problem of SDA. However, these two
methods just make use of the SDA model to exploit a unified
feature representation for all the domains without identifying
the pivots. Similarly, the DANN model [Ganin and Lempit-
sky, 2015; Ganin et al., 2016], which uses a gradient reversal
layer to produce representations, cannot identify the pivots.

3 Adversarial Memory Network
In this section, we introduce the proposed AMN model for
cross-domain sentiment classification. We first give the prob-
lem definition and notations. Then we give an overview of
the AMN model. Finally we present the details of different
components as well as the training process.

3.1 Problem Definition and Notations
Suppose we have a set of labeled data X l

s=
{
xis, y

i
s

}N l
s

i=1
as

well as some unlabeled data Xu
s =

{
xis
}N l

s+N
u
s

i=N l
s+1

in a source

domain, where N l
s and Nu

s denote the number of labeled data
and unlabeled data, respectively. In a target domain, there is a
set of unlabeled dataXt =

{
xit
}Nt

i=1
, whereNt is the number

of unlabeled data. The task of the cross-domain sentiment
classification is to learn a robust classifier trained on labeled
data in the source domain to predict the polarity of unlabeled
examples from the target domain.

3.2 An Overview of the AMN Model
In this section, we present an overview of the AMN model
for cross-domain sentiment classification.

The AMN model is inspired by the successful use of mem-
ory network in question answering [Sukhbaatar et al., 2015],
document classification [Yang et al., 2016], and aspect-level
sentiment classification [Tang et al., 2016]. The memory
network can capture the corresponding important words ac-
cording to the task of interest using the attention mechanism.
The goal of the AMN model is to automatically capture the
pivots. Therefore, we need to make use of the memory net-
work to extract these pivots that have two attributes: (1) They
are the important sentiment words for sentiment classifica-
tion; (2) These words are shared in both domains. In order to
achieve this goal, we design two parameter-shared deep mem-
ory networks, where one network, denoted by MN-sentiment,
is for sentiment classification and the other, denoted by MN-
domain, is for domain classification that aims to predict do-
main labels of samples, i.e., coming from the source or target
domain. These two networks are jointly trained so that the
selected features minimize the sentiment classification errors
and at the same time make a domain classifier incapable of
discriminating samples from the source and target domains.
The overall architecture of the AMN model is shown in Fig-
ure 1.

Given a document d = {w1, w2 . . . wn}, we first map each
word into its embedding vector as ei = Awi and get a vector
representation e = {e1, e2 . . . en} for the document. These
word vectors are stacked and put into the external memory
m ∈ Rd×m, where m is the memory size that is larger than
the maximum length of documents and the free memories are
padded with zero vectors. As illustrated in Figure 1, each
memory network contains multiple hops, each of which con-
sists of an attention layer and a linear layer. In the first hop,
we use a query vector qw as the input to capture important
words from memory m through the attention layer. The query
vector qw is randomly initialized during the training process
and can be learned for a high-level representation according
to the task of interest. The output of the attention layer and
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Figure 1: The framework of the AMN model.

the linear transformation of the query vector are combined as
the input of the next hop. The output vectors in the last hop of
memory networks are considered as representations of a doc-
ument with respect to the queries, and they are further used
as the representations for the sentiment classifier and domain
classifier respectively.

For the MN-sentiment network, the query vector qw can
be seen as a high-level representation of a fixed query ‘what
is the sentiment word’ over words. For the MN-domain net-
work, we add the Gradient Reversal Layer (GRL) [Ganin and
Lempitsky, 2015; Ganin et al., 2016] between the last hop of
the MN-domain network and the domain classifier to reverse
the gradient direction of the MN-domain network. In this
way, the MN-domain network can produce a representation
such that the domain classifier cannot predict the domain of
the encoded representation and hence maximize the domain
confusion. Thus, the query vector qw used by the MN-domain
network can be seen as a high-level representation of a fixed
query ‘what is the domain-shared word’. These two memory
networks share all the parameters including the query vec-
tor qw and they are jointly trained such that the query vector
qw stands for a higher-level representation of a fixed query
‘what is the pivot’. Besides, the parameters of the attention
and linear layers are shared in different hops for each memory
network.

3.3 Components
In the following, we introduce components in AMN one by
one.

Word Attention
Actually, not all words contribute equally to the representa-
tion of a document for different tasks, either sentiment clas-
sification or domain classification. Therefore, we introduce
an attention mechanism to extract such important words for
the task and aggregate the representation of those meaningful
words to form an output of the attention model.

We take the external memory m ∈ Rd×m and the query
vector qw as the input of a memory network. For the MN-
sentiment network, we only update the external memory ms

by the labeled data in the source domain. For the MN-domain

network, we update the external memory md by all the data
from the source and target domains. In the following, we
denote by m as one of the two external memories.

We first feed the each piece of memory mi through a one-
layer neural network to get a hidden representation hi, and
measure the importance of the word as the similarity of hi
with the query vector qw. Then we get a normalized impor-
tance weight ai through a softmax function as

ai =
exp

(
hTi qw

)∑n
j=1 exp

(
hTj qw

) ,
where n is the size of the memory occupied and hi =
tanh (Wsmi + bs). Here we do not use the whole memory
m because we have found that the attention model some-
times assigns large weights to the free memories and gives
low weights to the occupied part, which may reduce the qual-
ity of the document representation. The weights ai for free
memories are all set by zero.

After that, we compute an output vector v of the attention
layer as a weighted sum of each piece of memory in m:

v =
m∑
i=1

aimi.

Then, we get the output vectors vs and vd in the last hop
of each memory network as the feature representations pro-
duced by the MN-sentiment and MN-domain networks, re-
spectively. Note that, we also add the Position Encoding (PE)
introduced in [Sukhbaatar et al., 2015] to get the final external
memory m.

Sentiment Classifier
As illustrated in the top left part of Figure 1, we treat the
output vector in the last hop of the MN-sentiment network
as the document representation vs and feed it to the softmax
layer for sentiment classification:

y = softmax (Wsvs + bs) .

The goal of the sentiment classifier is to minimize the cross-
entropy for all the labeled data in the source domain as

Lsen = − 1

N l
s

N l
s∑

i=1

(
ŷi ln yi+(1− ŷi) ln (1− yi)

)
,

where ŷi, yi ∈ {0, 1} are the ground truth and the predicted
sentiment label for sample i, respectively.

Domain Classifier
Similarly, as showed in the top right part of Figure 1, we treat
the output vector in the last hop of the MN-domain network
as the document representation vd for domain classification.
Before feeding vd to the softmax layer, the document repre-
sentation vd goes through the GRL. During the forward prop-
agation, the GRL acts as an identity function but during the
backpropagation, the GRL takes the gradient from the subse-
quent level, multiplies it by −λ and passes it to the preceding
layer. We can formulate GRL as a ‘pseudo-function’ Qλ (x)
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by two equations below in order to describe its forward- and
backward- behaviours:

Qλ (x) = x

∂Qλ(x)

∂x
= −λI.

We refer the document representation vd thorough the GRL
as Qλ (vd) = v̂d and then feed it to the softmax layer as

d = softmax (Wdv̂d + bd)

Mathematically, we treat the MN-domain network as vd =
H (x; θh) and the domain classifier as Z (Qλ (vd) ; θz).
Learning with the GRL is adversarial such that θz is opti-
mized to increase Z’s ability to distinguish between document
representations from the source and target domains, while θh
learns document representations to reduce the domain clas-
sification accuracy due to the reversal of the gradient. Es-
sentially, θh is optimized to maximize the loss of the domain
classifier, while simultaneously optimizing the parameters θz
of the domain classifier to minimize the loss of the domain
classifier. The domain classifier is trained to minimize the
cross-entropy for all data from the source and target domains:

Ldom = − 1

Ns +Nt

Ns+Nt∑
i=1

d̂i ln di +
(
1− d̂i

)
ln (1− di)

where d̂i, di ∈ {0, 1} are the ground truth and the predicted
domain label for sample i, respectively and Ns = N l

s + Nu
s

is the number of data from the source domain.

Regularization
In order to avoid the overfitting problem for the sentiment
classifier and the domain classifier, we also add the squared
Frobenius norm for weights Ws,Wd and squared `2 norm
regularization for bias terms bs, bd:

Lreg = ‖Ws‖2F + ‖Wd‖2F + ‖bs‖22 + ‖bd‖
2
2

where ‖·‖2 denotes the `2 norm of a vector and ‖·‖F denotes
the Frobenius norm of a matrix.

3.4 Joint learning
We combine each component losses into an overall object
function:

Ltotal = Lsen + Ldom + ρLreg

where ρ is a regularization parameter to balance the regular-
ization term and other loss terms. The goal of the joint learn-
ing is to minimize Ltotal with respect to the model param-
eters except for the adversarial training part. The sentiment
classifier is trained to minimize the sentiment classification
loss Lsen for the sentiment classification task. Because the
unsupervised domain adaptation setting is adopted, the senti-
ment classification loss is only applied to the source domain.
It would be convenient to add the loss term for the labeled
data in the target domain if they are available. The domain
classification loss Ldom makes use of both labeled and unla-
beled data from both domains. Each mini-batch for the do-
main classifier is balanced, half coming from the source and
half from the target. The regularization term Lreg is added to
avoid the overfitting. All the parameters are optimized jointly
by using the standard backpropagation algorithm.

Table 1: Statistics of the Amazon reviews dataset including the num-
ber of training, testing, and unlabeled reviews for each domain as
well as the portion of negative samples in the unlabeled data.

Domain #Train #Test #Unlab. % Neg.
Books 1600 400 6000 13.45%
DVD 1600 400 34741 21.47%

Electronics 1600 400 13153 11.92%
Kitchen 1600 400 16785 17.82%

4 Experiment
In this section, we empirically evaluate the performance of
the proposed AMN model.

4.1 Settings
Experiments are conducted on the Amazon reviews dataset
[Blitzer et al., 2007], which has been widely used for cross-
domain sentiment classification. This dataset contains re-
views from four products (domains): Books (B), DVD (D),
Electronics (E) and Kitchen appliances (K). There are 2000
labeled reviews for each domain with 1000 positive reviews
(higher than 3 stars) and 1000 negative reviews (3 stars or
lower), as well as 6000 unlabeled reviews for B, 34741 for
D, 13153 for E, and 16785 for K. Note that unlabeled data
is imbalanced consisting of more positive but less negative
reviews. Table 1 summarizes the statistics of the dataset.

By following [Pan et al., 2010], we construct 12 cross-
domain sentiment classification tasks: D→B, E→B, K→B,
K→E, D→E, B→E, B→D, K→D, E→D, B→K, D→K,
E→K, where the word before the arrow corresponds to the
source domain and the word after the arrow corresponds to
the target domain. For each transfer pair A→B, we randomly
choose 800 positive and 800 negative reviews from the source
domain A as the training data, the rest from the source domain
A as the validation data, and 200 positive and 200 negative re-
views from the target domain B for testing. All data (labeled
and unlabeled data) from both domains is used for domain
classifier.

4.2 Implementation Details
For each transfer pair A→B, the word embedding in A is first
initialized with the public 300-dimensional word2vec vec-
tors that are trained on 100-billion-word Google News us-
ing the continuous bag-of-words architecture [Mikolov et al.,
2013] and they are fine-tuned during the training process. The
weights in networks are randomly initialized from a uniform
distribution U [−0.01, 0.01]. The memory size m is set to
500 and the number of hops is 3. The regularization weight
ρ is set to 0.05, which is obtained via 5-fold cross-validation
on the labeled data in the source domain and is used for all
transfer pairs.

The model is optimized with the stochastic gradient de-
scent over shuffled mini-batches with momentum rate 0.9.
Due to different training sizes for the sentiment classifier and
domain classifier, we set the batch size bd for the domain
classifier with 100, half coming from the source and target
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domains, and use the same number of batches for both clas-
sifiers. Gradients with the `2 norm larger than 40 are nor-
malized to be 40. We define the training progress as p = t

T ,
where t and T are current epoch and the maximum one, re-
spectively, and T is set to 120. By following [Ganin et al.,
2016], the learning rate is decayed as η = 0.0075

(1+10p)0.75
and

the adaptation rate is increased as λ = 2
1+exp(−10p) − 1 dur-

ing training. We perform early stopping on the validation set
during the training process.

4.3 Performance Comparison
The baseline methods in the comparison include:

• SCL: Blitzer et al. proposed Structural Correspondence
Learning (SCL) to learn a low-dimensional feature rep-
resentation for source and target domains [Blitzer et al.,
2007].

• SFA: Pan et al. proposed Spectral Feature Alignment
(SFA) to build a bridge between source and target do-
mains by aligning pivots with non-pivots [Pan et al.,
2010].

• DANN: Ganin et al. have applied the shallow version
of Domain Adversarial Neural Networks (DANN) to
the cross-domain sentiment classification [Ganin et al.,
2016]. The DANN performs domain adaptation on the
review representation encoded in a 5000-dimension fea-
ture vector of unigrams and bigrams and is a baseline
method for the adversarial training.

• DAmSDA: Ganin et al. have also applied their shallow
version of DANN on the feature representation gener-
ated by Marginalized Stacked Denoising Autoencoders
(mSDA). The new representation is the concatenation of
the output of the 5 layers and the original input. Each ex-
ample is encoded as a vector of 30000 dimensions. Here
we denote it as DAmSDA.

• DACNN: We also apply the shallow version of DANN
on the representation generated by the CNN-non-static
version of the Convolutional Neural network (CNN)
[Kim, 2014]. Here, we refer it as DACNN.

For the SCL, DANN and DAmSDA methods, we use
the source codes provided by original authors and we re-
implement other baseline methods.

Figure 2 reports the classification accuracies of different
methods on the Amazon reviews dataset. The proposed AMN
model consistently achieves the best performance on almost
all the tasks. SCL and SFA perform poorly on average. Their
performance is highly dependent on pivots selection methods
which may not capture the pivots accurately. On the contrary,
AMN can automatically capture the pivots with the attention
mechanism. Compared to the adversarial training based ap-
proaches, AMN outperforms DANN by 7.71% and exceeds
DAmSDA and DACNN by 4.38% and 4.36% on average, re-
spectively. One reason is that AMN can automatically cap-
ture the pivots and assign them higher weights to generate
a better feature representation shared by domains. Besides,
DAmSDA has a high computational cost because it depends
on high-dimensional features. For AMN, the two memory
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Figure 2: Average results for cross-domain sentiment classification
on the Amazon reviews dataset.

networks share parameters and the parameters of attention
and linear layers are also shared in different hops for each
memory network. In addition, the dimension of the features
shared by the source and target domain is 300, which is only
1% of that of DAmSDA. Hence, AMN is superior in terms
of both classification accuracy and computational efficiency.
We also compare with a variant of the proposed AMN model
without domain adaptation, denoted by AMN-NA. That is,
the AMN-NA model uses labeled data in the source domain
for training and then directly tests its performance on the tar-
get domain. It is interesting that AMN-NA can even perform
comparably against baseline methods. It is because the mem-
ory network can capture important words for sentiment classi-
fication. As a reference, we also provide a upper-bound of the
performance, which corresponds to horizontal lines in Fig-
ure 2, by training AMN-NA on the labeled data in the target
domain. According to Figure 2, we can see that in all the set-
tings, the performance of AMN is close to the upper-bound
and sometimes even better, which demonstrates the effective-
ness of AMN.

4.4 Visualization of Attention
In order to validate that our model is able to select pivots in
a document, we visualize the final attention layer of the MN-
sentiment network in Figure 3. Figure 3 shows that our model
can capture important sentiment words shared in both do-
mains, such as positive sentiment words such as great, good,
fantastic, elegant, best, excellent, gorgeous, beautiful and
negative sentiment words including terrible, poor, uncom-
fortable, disappointed, disappointment, unusable, useless.

As shown in Figure 4, we list some examples of pivots cap-
tured based on the attention weights in the E→K task. These
pivots contribute a lot to the representations shared by do-
mains and are crucial to cross-domain sentiment classifica-
tion.
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GT:1 Prediction:1 
great dvd media i have burned over 100 of these in the past 6 months i have only had 1 burn 
badly havent found a dvd player yet that they wont play in  
GT:1 Prediction:1 
good for canon a95 fantastic take all the videos and pictures you want with the best quality  
GT:1 Prediction:1 
you cannot beat a belkin cable great quality excellent construction and strong rj45 plugs i 
have worked with a decent share of cat5 and i have never had to cut and terminate a belkin 
cable due to regular wear and tear  
GT:0 Prediction:0 
i cant hear you sound output is terrible you cant hear it in a car or airplane with high quality 
noise cancelling earphones when i called customer service they told me it was not intended 
for use in a car or airplane picture is very good but i have heard better sound from much 
cheaper players dont waste your money  

GT:0 Prediction:0 
great technology terrible customer experience i had the same exact experience with the poor 
fit of these headphones and the rude customer service their surround sound he592 phones 
dont fit well either  
GT:0 Prediction:0 
uncomfortable i had these headphones for a few years then they got crushed in half in my 
bag they hurt your ears after about ten minutes they are durable though i would recommend 
the kind that clip behind your ear  

(a) Electronics domain

GT:1 Prediction:1 
great gifts i love the rapid ice wine coolers i give them for token gifts and use them 
frequently myself they are great for a spure of the moment glass of wine that needs chilling  

GT:1 Prediction:1 
an elegant way of serving its a traditional serve ware for serving the soup course the color of 
the tureen set allows it to be used with many of the dinnerwares amp the size is adequate to 
serve at least 810 people the under plate is something not found with usual tureen sets which 
gives it an elegant look but it appears a little overpriced  

GT:1 Prediction:1 
gorgeous i just received this as a wedding gift and it is beautiful a great gift  
GT:0 Prediction:0 
disappointed whisker i am usually very pleased with oxo products but this one is a big 
disappointment i have not found it to be good for or at anything wished id saved the five bucks  

GT:0 Prediction:0 
too poorly made for everyday use we have a full line of fiesta dishware and thought having 
the matching flatware would be nice after a year of standard use and dishwashing about 13 
of the flatware is unusable the upside is that it is cheap and replaceable but count me among 
those who would rather pay more for something that lasts we are in the process of ditching 
the fiesta flatware line and moving to something more robust  
GT:0 Prediction:0 
totally useless we bought this to use at events for a chocolate themed group at college and 
used it several times before giving up 

(b) Kitchen domain

Figure 3: Samples from the Amazon reviews dataset in the E→K task. Deeper color implies larger attention weights. Label 1 denotes positive
sentiment and label 0 denotes negative sentiment.

good great amazing excellent better 
best nice cool perfect happy 
fantastic outstanding cheaper easy 
beautiful convenient well fine 
wonderful worthwhile pleased 
affordable fast cheap flawless 
unbelievable reliable satisfied 
impressive pretty compatible 
nicely comfort powerful brilliant 
worth unbreakable fancy impressed 
compact handy elegant quick love 
durable

bad worst worse uncomfortable 
useless confused unreliable sad 
unacceptable poor impossible 
misleading unhappy waste upset 
disappointing thrilled disappointed 
disappointment negative terrible 
messy unsui table worthless 
horrible poorly pricy defective 
dangerous fragile incorrectly 
stressful confusing expensive 
frustrating difficult unexpected 
painful ridiculous

Positive sentiment words

Electronics
-kitchen

Tasks Negative sentiment words

Figure 4: Samples of pivots captured by AMN in the E→K task.

4.5 Visualization of Representation
Figure 5 shows the visualization of the feature representation
of the AMN model for the training data in the source do-
main and the testing data in the target domain for the E→K
tasks. As shown in Figure 5, two feature distributions from
the source and target domains are very similar, implying that
the learned feature representation can be well shared by both
domains.

5 Conclusion
In this paper, we propose the AMN model for cross-domain
sentiment classification. The AMN model can automatically
capture the pivots by using an attention mechanism without
manually selecting pivots. AMN can offer a direct visual-
ization of the pivots, which increases the interpretability of
AMN. These pivots are assigned with higher weights to gen-
erate a better feature representation shared by domains. Ex-
periments on the Amazon review dataset demonstrate that
AMN can significantly outperform the state-of-the-art meth-
ods.

Figure 5: Visualization by applying principal component analysis
to the representation of source training data and target testing data
produced by AMN for E→K tasks.

Due to the good compatibility of memory network, the pro-
posed AMN model could be easily adapted to other domain
adaptation tasks such as POS tagging [Blitzer et al., 2006]
and relation extraction [Bollegala et al., 2011], which are the
focus of our future studies.
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